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1 Introduction

Containers are light-weight alternatives to virtual machines;
They are increasingly used for sharing and deploying appli-
cations, and thus facilitate the conduct of reproducible sci-
ence. Container engines, such as Linux Containers (LXC) [4],
Docker [1] and Singularity [5], use namespace primitives
within the Linux kernel to execute an application in isolation
on a host machine, and encapsulate the application’s data and
all its system dependencies. When a container is shared and
deployed on a target machine it can be re-executed in isolation
using encapsulated data and dependencies without the target
environment interfering with its execution.

Using a container to isolate and port a computation is a
necessary, albeit, only the first step toward the conduct of
reproducible science. Current containers do not present any
further guidance required for conducting reproducible science,
such as verify if the results of repeated computations match
(or do not match) with results obtained from the original
execution of the computation on the host machine.

To facilitate such guidance, we recently proposed auditing
provenance as part of container-like, sandbox systems [8].
Sciunit creates a container-like, sandbox by auditing an appli-
cation’s execution with ptrace and copying application con-
tents. Sciunit creates a self-contained sandbox that includes
the provenance audited during application execution. The
sandbox, similar to a container, is portable across different
environments. Unlike namespace containers [1, 4, 5], Sciunit
uses provenance to verify if repeated results match (or do not
match) within the sandbox. This match is performed only on
encapsulated application files, and not by isolating the appli-
cation’s execution from other processes. Sciunit works in user
space and does not require any compiler-level application
instrumentation to determine dependencies [6]. Encapsulated
files within a Sciunit are stored in a lightweight de-duplication
storage system [7]. Runs of an application that incrementally
differ from each other, are stored in a deduplicated storage
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thus significantly reducing the container size.
In this demonstration we showcase Sciunit’s declarative

interface comprising of commands that create portable con-
tainers, verifiably repeat them, and explain their contents us-
ing provenance logs. We will demonstrate how the interface
controls all changes to the content and thus guarantees execu-
tion repeatability. Using the interface commands, users can
compare two executions based on its provenance and content,
and incrementally repeat them. In case a provenance-based
repeatability analysis fails, Sciunit informs the user of the
files from where the experiment started diverging.

2 Use cases and Setup

We describe the scenario and setup of the demonstration.
Use cases. We exemplify Sciunit on two types of use cases:
(i) an instructional use case that demonstrates the interface at
a feature and an intuitive level, and (ii) a real use case com-
prising of artifacts submitted for evaluation to a Systems and
Machine Learning (SysML) conference and stamped reusable
from the ACM reproducibility initiative (Artifact #1 in [3]).
Both use cases will demonstrate breadth and generality of
Sciunit on multiple types of computational studies and their
experiments. The second use case will further illustrate ex-
plaining containers and incremental replay in a real setting.
Setup. We use the Ubuntu and CentOS distribution of the
Linux kernel. For this demonstration, we use machines hosted
on the cloud with Sciunit installed. Consider a user applica-
tion, such as Artifact #1 in [3], on a cloud machine. Each
parametric execution of this use case corresponds to an exper-
iment.

Declarative Interface. Sciunit offers both a command-line
client and a Python-based API. A user starts a PWDemo sciu-
nit as in:
» sciunit open PWDemo
Within this open sciunit the user encaspulates an experiment
and its provenance with:
» sciunit exec main.sh <params>
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in which main.sh refers to an entry or start command for run-
ning an experiment. Parameters of the experiment, <params>,
may be specified on command-line. This command assigns an
execution identifier, ei, to the experiment within the PWDemo
sciunit. This command also checks in all the binary, data, con-
figuration, and environment files corresponding to the experi-
ment along with its provenance in a de-duplicated storage [7].
The user can perform a provenance-based replay [8] by:
» sciunit repeat ei

in which ei represents the execution identifier of the experi-
ment to be repeated. In the current version of Sciunit, a repeat
does not fail if a provenance-based verification fails; the user
is only informed that the repeat does not correspond to origi-
nal execution.

The Sciunit interface considers parameter changes (input
argument or data file) to an execution as new executions. For
a given experiment, parameters are changed as:
» sciunit given <params> repeat ei %<pp>
in which <params> are the changed parameters and %<pp>
is their respective parameter position. By using the same
repeat command to modify the parameter in a given position,
allows the system to maintain related experiments (owing to
parameter changes) together. Modifications to source code
of an experiment result in entirely new experiments. A user
can, however, modify files of only one experiment at a time.
Modifications must be committed as in:
» sciunit commit
to commit the checked out experiment. It also executes the

experiment to store the change and its associated provenance.
Our demonstration will show how the declarative Sciu-

nit command-line interface provides strict version control
on experiment executions and its provenance. The interface
prevents uncontrolled changes and enables comparisons and
incremental replay.
Explaining sciunits. The declarative interface includes com-
mands for explaining an experiment in a container. Sciunit
lists all audited experiments as:
» sciunit list
A given experiment details are obtained with:
» sciunit show e2

which shows size and other metadata of an experiment. Sciu-
nit uses provenance to further explain container contents by:
» sciunit show – detail e2

The detailed show command creates a classified view of
the file contents of e2 based on read/write patterns in the
provenance log. The view is classified into input, transient,
and output files, configuration files, and system dependen-
cies. Figure 1 shows part of the view as install requirements
generated from the provenance log of the real use case [3].

We will demonstrate that Sciunit distinguishes between sys-
tem and user-listed dependencies, and for each system depen-
dency documents the relevant package manager. For instance,

if the execution trace specifies a path to libcrypto.so.1.1 then
the system dependency libssl is mentioned. This can be useful
for generating a README or requirements.txt of required sys-
tem information. Version information of files is also generated
in the classified view. This is particularly useful for scripts
since their source code is audited. A Sciunit package, how-
ever, does not record source code versions, which we assume
are typically maintained by the author in a version control
repository, such as Git.

Repeating Experiments Incrementally. When a sciunit is
shared across compute nodes, a typical operation is to repeat
the experiments in the container. The repeat operation in the
Sciunit interface re-starts the experiment process. We will
demonstrate incremental repeat of an experiment. In particu-
lar, for our two use cases we will consider a Jupyter notebook
format and show how Sciunit distinguishes notebook cells that
have not changed from those that have. By using provenance,
Sciunit bypasses the repeat operation for unchanged cells and
replaces it with memoized output from a previous audit, and
executes changed cells. Such an incremental repeat allows
experiments to be branched. The incremental repetition of
experiments is not available via Sciunit’s command-line inter-
face but is part of the Python API. The user must also install
the Sciunit kernel within JupyterHub.

Figure 1: Provenance-based explanations of sciunit
Artifacts of this demonstration, i.e., the generated sciunits

for the two use cases, and the demonstration recording are
available via [2].
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